A Novel Approach to Machine Discovery: Genetic Programming and Stochastic Grammars
نویسندگان
چکیده
The application of Genetic Programming (GP) to the discovery of empirical laws most often suffers from two limitations. The first one is the size of the search space; the second one is the growth of non-coding segments, the introns, which exhausts the memory resources as GP evolution proceeds. These limitations are addressed by combining Genetic Programming and Stochastic Grammars. On one hand, grammars are used to represent prior knowledge; for instance, context-free grammars can be used to enforce the discovery of dimensionally consistent laws, thereby significantly restricting GP search space. On the other hand, in the spirit of distribution estimation algorithms, the grammar is enriched with derivation probabilities. By exploiting such probabilities, GP avoids the intron phenomenon. The approach is illustrated on a real-world like problem, the identification of behavioral laws in Mechanics.
منابع مشابه
Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect
This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...
متن کاملModelling and Decision-making on Deteriorating Production Systems using Stochastic Dynamic Programming Approach
This study aimed at presenting a method for formulating optimal production, repair and replacement policies. The system was based on the production rate of defective parts and machine repairs and then was set up to optimize maintenance activities and related costs. The machine is either repaired or replaced. The machine is changed completely in the replacement process, but the productio...
متن کاملA genetic algorithm approach for a dynamic cell formation problem considering machine breakdown and buffer storage
Cell formation problem mainly address how machines should be grouped and parts be processed in cells. In dynamic environments, product mix and demand change in each period of the planning horizon. Incorporating such assumption in the model increases flexibility of the system to meet customer’s requirements. In this model, to ensure the reliability of the system in presence of unreliable machine...
متن کاملMachine Reliability in a Dynamic Cellular Manufacturing System: A Comprehensive Approach to a Cell Layout Problem
The fundamental function of a cellular manufacturing system (CMS) is based on definition and recognition of a type of similarity among parts that should be produced in a planning period. Cell formation (CF) and cell layout design are two important steps in implementation of the CMS. This paper represents a new nonlinear mathematical programming model for dynamic cell formation that employs the ...
متن کاملA novel bi-level stochastic programming model for supply chain network design with assembly line balancing under demand uncertainty
This paper investigates the integration of strategic and tactical decisions in the supply chain network design (SCND) considering assembly line balancing (ALB) under demand uncertainty. Due to the decentralized decisions, a novel bi-level stochastic programming (BLSP) model has been developed in which SCND problem has been considered in the upper-level model, while the lower-level model contain...
متن کامل